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A. Mathematics
A.1 Geometry

Units of Angle and Solid Angle. Radian is the angular
unit most suitable for theoretical studies. One radian
is the angle subtended by a circular arc whose length
equals the radius. If r is the radius of a circle and s the
length of an arc, the arc subtends an angle

α= s/r .

Since the circumference of the circle is 2πr, we have

2π rad= 360◦ or 1 rad= 180◦/π .

In an analogous way we can define a steradian, a unit
of solid angle, as the solid angle subtended by a unit area
on the surface of a unit sphere as seen from the centre.
An area A on the surface of a sphere with radius r
subtends a solid angle

ω= A/r2 .

Since the area of the sphere is 4πr2, a full solid angle
equals 4π steradians.

Circle

Area A = πr2 .

Area of a sector As = 1

2
αr2 .

Sphere

Area A = 4πr2 .

Volume V = 4

3
πr3 .

Volume of a sector Vs = 2

3
πr2h = 2

3
πr3(1− cosα)

= Vsphere havα .

Area of a segment As = 2πrh = 2πr2(1− cosα)

= Asphere havα .

A.2 Conic Sections

As the name already says, conic sections are curves
obtained by intersecting circular cones with planes.
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Ellipse. Equation in rectangular coordinates

x2

a2
+ y2

b2
= 1 .

a = the semimajor axis,

b= the semiminor axis b= a
√

1− e2,

e= eccentricity 0≤ e< 1.

Distance of the foci from the centre c= ea.

Parameter (semilatus rectum) p= a(1− e2).

Area A = πab.

Equation in polar coordinates

r = p

1+ e cos f
,

where the distance r is measured from one focus, not
from the centre.

When e= 0, the curve becomes a circle.

Hyperbola. Equations in rectangular and polar
coordinates

x2

a2
− y2

b2
= 1 , r = p

1+ e cos f
.

Eccentricity e> 1.

Semi-minor axis b= a
√
e2−1.

Parameter p= a(e2−1).

Asymptotes y =± b
a x.

Parabola. Parabola is a limiting case between the
previous ones; its eccentricity is e= 1.

Equations

x =−ay2 , r = p

1+ cos f
.

Distance of the focus from the apex h = 1/4 a.
Parameter p= 1/2 a.
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A.3 Taylor Series

Let us consider a differentiable real-valued function of
one variable f : R→ R. The tangent to the graph of the
function at x0 is

y = f(x0)+ f ′(x0)(x− x0) ,

where f ′(x0) is the derivative of f at x0. Now, if x is
close to x0, the graph of the tangent at x will not be very
far from the graph of the function itself. Thus, we can
approximate the function by

f(x)≈ f(x0)+ f ′(x0)(x− x0) .

The approximation becomes worse, the more the deriva-
tive f ′ varies in the interval [x0, x]. The rate of change
of f ′ is described by the second derivative f ′′, and
so on. To improve accuracy, we have to also include
higher derivatives. It can be shown that the value of
the function f at x is (assuming that the derivatives
exist)

f(x)= f(x0)+ f ′(x0)(x− x0)

+ 1

2
f ′′(x0)(x− x0)

2+ . . .

+ 1

n! f
(n)(x0)(x− x0)

n+ . . . ,

where f (n)(x0) is the nth derivative at x0 and n! is the
n-factorial, n! = 1 ·2 ·3 · . . . ·n. This expansion is called
the Taylor series of the function at x0.

The following list gives some useful Taylor series (in
all these cases we have x0 = 0):

1

1+ x = 1− x+ x2− x3+ . . .
converges if |x|< 1

1

1− x = 1+ x+ x2+ x3+ . . .
√

1+ x = 1+ 1

2
x− 1

8
x2+ 1

16
x3− . . .

√
1− x = 1− 1

2
x− 1

8
x2− 1

16
x3− . . .

1√
1+ x = 1− 1

2
x+ 3

8
x2− 5

16
x3− . . .

1√
1− x = 1+ 1

2
x+ 3

8
x2+ 5

16
x3+ . . .

ex = 1+ x+ 1

2! x
2+ 1

3! x
3+ . . .+ 1

n! x
n+ . . .

converges for all x

ln(1+ x)= x− 1

2
x2+ 1

3
x3− 1

4
x4+ . . .

x ∈ (−1, 1]

sin x = x− 1

3! x
3+ 1

5! x
5− . . . for all x

cos x = 1− 1

2! x
2+ 1

4! x
4− . . . for all x

tan x = x+ 1

3
x3+ 2

15
x5+ . . . |x|< π

2
.

Many problems involve small perturbations, in which
case it is usually possible to find expressions having very
rapidly converging Taylor expansions. The great advan-
tage of this is the reduction of complicated functions
to simple polynomials. Particularly useful are linear
approximations, such as
√

1+ x ≈ 1+ 1

2
x ,

1√
1+ x ≈ 1− 1

2
x , etc.

A.4 Vector Calculus

A vector is an entity with two essential properties:mag-
nitude and direction. Vectors are usually denoted by
boldface letters a, b, A, B etc. The sum of the vectors
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A and B can be determined graphically by moving the
origin of B to the tip of A and connecting the origin of
A to the tip of B. The vector −A has the same mag-
nitude as A, is parallel to A, but points in the opposite
direction. The difference A− B is defined as A+ (−B).

Addition of vectors satisfies the ordinary rules of
commutativity and associativity,

A+ B= B+ A ,
A+ (B+C)= (A+ B)+C .

A point in a coordinate frame can be specified by
giving its position or radius vector, which extends from
the origin of the frame to the point. The position vector r
can be expressed in terms of basis vectors, which are
usually unit vectors, i. e. have a length of one distance
unit. In a rectangular xyz-frame, we denote the basis
vectors parallel to the coordinate axes by î, ĵ and k̂. The
position vector corresponding to the point (x, y, z) is
then

r= x î+ y ĵ+ zk̂ .

The numbers x, y and z are the components of r. Vectors
can be added by adding their components. For example,
the sum of

A= ax î+ay ĵ+az k̂ ,
B= bx î+by ĵ+bz k̂ ,

is

A+ B= (ax+bx)î+ (ay+by) ĵ+ (az+bz)k̂ .
The magnitude of a vector r in terms of its

components is

r= |r| =
√
x2+ y2+ z2 .

The scalar product of two vectors A and B is a real
number (scalar)

A · B= axbx+ayby+azbz = |A||B| cos(A, B) ,

where (A, B) is the angle between the vectors A and B.
We can also think of the scalar product as the projec-
tion of, say, A in the direction of B multiplied by the
length of B. If A and B are perpendicular, their scalar
product vanishes. The magnitude of a vector expressed
as a scalar product is A = |A| = √A · A.

The vector product of the vectors A and B is a vector

A× B= (aybz−azby)î+ (azbx−axbz) ĵ
+ (axby−aybx)k̂

=

∣∣∣∣∣∣∣
î ĵ k̂

ax ay az
bx by bz

∣∣∣∣∣∣∣ .
This is perpendicular to both A and B. Its length gives
the area of the parallelogram spanned by A and B. The
vector product of parallel vectors is a null vector. The
vector product is anti-commutative:

A× B=−B× A .
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Scalar and vector products satisfy the laws of
distributivity:

A · (B+C)= A · B+ A ·C ,
A× (B+C)= A× B+ A×C ,
(A+ B) ·C = A ·C+ B ·C ,
(A+ B)×C = A×C+ B×C .
A scalar triple product is a scalar

A× B ·C =

∣∣∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣∣∣
.

Here the cross and dot can be interchanged and the
factors permuted cyclically without affecting the value
of the product. For example A×B ·C = B×C · A= B ·
C× A, but A× B ·C =−B× A ·C.

A vector triple product is a vector, which can be
evaluated using one of the expansions

A× (B×C)= B(A ·C)−C(A · B) ,
(A× B)×C = B(A ·C)− A(B ·C) .
In all these products, scalar factors can be moved

around without affecting the product:

A · kB= k(A · B) ,
A× (B× kC)= k(A× (B×C)) .
The position vector of a particle is usually a function

of time r= r(t)= x(t)î+ y(t) ĵ+ z(t)k̂. The velocity of
the particle is a vector, tangent to the trajectory, obtained
by taking the derivative of r with respect to time:

v= d

dt
r(t)= ṙ= ẋ î+ ẏ ĵ+ żk̂ .

The acceleration is the second derivative, r̈.
Derivatives of the various products obey the same

rules as derivatives of products of real-valued function:

d

dt
(A · B)= Ȧ · B+ A · Ḃ ,

d

dt
(A× B)= Ȧ× B+ A× Ḃ .

When computing a derivative of a vector product, one
must be careful to retain the order of the factors, since
the sign of the vector product changes if the factors are
interchanged.

A.5 Matrices

Assume we have a vector x with components (x, y, z).
We can calculate another vector x′ = (x′, y′, z′), the
components of which are linear combinations of the
original components:

x′ = a11x+a12y+a13z ,

y′ = a21x+a22y+a23z ,

z′ = a31x+a32y+a33z .

This is a linear transform that maps the vector x to
a vector x′.

We can collect the coefficients to an array, called
a matrix A:

A=
⎛
⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ .

A general matrix can consist of an arbitrary number of
rows and columns. In this book we need only matri-
ces operating on vectors of a three-dimensional space,
and they always have three rows and columns. Two sub-
scripts refer to the different elements of the matrix, the
first one giving the row and the second one the column.
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When using matrix formalism it is convenient to
write vectors in the form of column vectors:

A=
⎛
⎜⎝xy
z

⎞
⎟⎠ .

We now define that the product of a matrix and
a column vector

x′ = Ax

or ⎛
⎜⎝x

′

y′

z′

⎞
⎟⎠=

⎛
⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠

⎛
⎜⎝xy
z

⎞
⎟⎠

means just

x′ = a11x+a12y+a13z ,

y′ = a21x+a22y+a23z ,

z′ = a31x+a32y+a33z .

Comparing these equations we see, for example, that
the first component of x′ is obtained by taking the first
row of the matrix, multiplying the components of the
vector x by the corresponding components of that row,
and finally adding the products.

This definition can easily be generalised to the
product of two matrices. The elements of the matrix

C = AB

are

cij =
∑
k

aikbk j .

This is easy to remember by noting that we take the
row i of the first factor A and the column j of the
second factor B and evaluate the scalar product of the
two vectors. For example⎛

⎜⎝1 1 1

0 1 2

1 2 3

⎞
⎟⎠

⎛
⎜⎝1 2 0

2 1 1

1 3 2

⎞
⎟⎠

=
⎛
⎜⎝1+2+1 2+1+3 0+1+2

0+2+2 0+1+6 0+1+4

1+4+3 2+2+9 0+2+6

⎞
⎟⎠

=
⎛
⎜⎝4 6 3

4 7 5

8 13 8

⎞
⎟⎠ .

When multiplying matrices, we have to be careful
with the order of the factors, because usually AB 	= BA.
If we multiply the matrices of the previous example in
the reverse order, we get quite a different result:⎛

⎜⎝1 2 0

2 1 1

1 3 2

⎞
⎟⎠

⎛
⎜⎝1 1 1

0 1 2

1 2 3

⎞
⎟⎠=

⎛
⎜⎝1 3 5

3 5 7

3 8 13

⎞
⎟⎠ .

A unit matrix I is a matrix, which has ones on its
diagonal and zeros elsewhere:

I =
⎛
⎜⎝1 0 0

0 1 0

0 0 1

⎞
⎟⎠ .

If a vector or a matrix is multiplied by a unit matrix, it
will remain unchanged.

If the product of two matrices is a unit matrix, the
two matrices are inverse matrices of each others. The
inverse matrix of A is denoted by A−1. It satisfies the
equations

A−1A= AA−1 = I .

In spherical astronomy we need mainly rotation ma-
trices, describing the rotation of a coordinate frame. The
following matrices correspond to rotations around the
x, y and z axes, respectively:

Rx(α)=
⎛
⎜⎝1 0 0

0 cosα sinα

0 − sinα cosα

⎞
⎟⎠ ,

Ry(α)=
⎛
⎜⎝ cosα 0 sinα

0 1 0

− sinα 0 cosα

⎞
⎟⎠ ,

Rz(α)=
⎛
⎜⎝ cosα sinα 0

− sinα cosα 0

0 0 1

⎞
⎟⎠ .

If the angle is α= 0, only a unit matrix remains.
The elements of a rotation matrix can easily be de-

termined. For example, a rotation around the x axis will
leave the x coordinate unaffected, and thus the first row
and column must be zeroes, except for the diagonal ele-
ment, which must be one. This will leave four elements.
When the angle is zero, the matrix has to reduce to a unit
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matrix; thus the diagonal elements must be cosines and
the other ones sines. The only problem is to decide,
which of the sines will get the minus sign. This is most
easily done by testing the effect of the matrix on some
basis vector.

The inverse matrix of a rotation matrix corresponds
to a rotation in the opposite direction. Thus it is obtained
from the original matrix by replacing the angle α by−α.
The only change in the matrix is that the signs of the
sines are changed.

For example, the precession matrix is a product of
three rotation matrices. Since the matrix product is not
commutative, these rotations must be carried out in the
correct order.

A.6 Multiple Integrals

An integral of a function f over a surface A

I =
∫
A

f dA

can be evaluated as a double integral by expressing the
surface element dA in terms of coordinate differentials.
In rectangular coordinates,

dA = dx dy

and in polar coordinates

dA = r dr dϕ .

The integration limits of the innermost integral may
depend on the other integration variable. For example,
the function xey integrated over the shaded area is

I =
∫
A

xey dA =
1∫

x= 0

2x∫
y= 0

xey dx dy

=
1∫

0

[∣∣∣∣
2x

0
xey

]
dx =

1∫
0

(xe2x− x) dx

=
∣∣∣∣
1

0

1

2
xe2x− 1

4
e2x− 1

2
x2 = 1

4
(e2−1) .

The surface need not be confined to a plane. For
example, the area of a sphere is

A =
∫
S

dS ,

where the integration is extended over the surface S of
the sphere. In this case the surface element is

dS = R2 cos θ dϕ dθ ,

and the area is

A =
2π∫

ϕ= 0

π/2∫
θ =−π/2

R2 cos θ dϕ dθ

=
2π∫

0

[∣∣∣∣
π /2

−π /2
R2 sin θ

]
dϕ

=
2π∫

0

2R2 dϕ = 4πR2 .
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Similarly, a volume integral

I =
∫
V

f dV

can be evaluated as a triple integral. In rectangular
coordinates, the volume element dV is

dV = dx dy dz ;
in cylindrical coordinates

dV = r dr dϕ dz ,

and in spherical coordinates

dV = r2 cos θ dr dϕ dθ

(θ measured from the xy plane)

or

dV = r2 sin θ dr dϕ dθ

(θ measured from the z axis) .

For example, the volume of a sphere with radius R is

V =
∫
V

dV

=
R∫

r= 0

2π∫
ϕ= 0

π /2∫
θ =−π /2

r2 cos θ dr dϕ dθ

=
R∫

0

2π∫
0

[∣∣∣∣
π/2

−π/2
r2 sin θ

]
dr dϕ

=
R∫

0

2π∫
0

2r2 dr dϕ

=
R∫

0

4πr2 dr =
∣∣∣∣
R

0

4πr3

3
= 4

3
πR3 .

A.7 Numerical Solution of an Equation

We frequently meet equations defying analytical so-
lutions. Kepler’s equation is a typical example. If we
cannot do anything else, we can always apply some nu-
merical method. Next we shall present two very simple
methods, the first of which is particularly suitable for
calculators.

Method1:Direct Iteration.We shall write the equation
as f(x)= x. Next we have to find an initial value x0 for
the solution. This can be done, for example, graphically
or by just guessing. Then we compute a succession of
new iterates x1 = f(x0), x2 = f(x1), and so on, until
the difference of successive solutions becomes smaller
than some preset limit. The last iterate xi is the solution.
After computing a few xi’s, it is easy to see if they are
going to converge. If not, we rewrite the equation as
f −1(x)= x and try again. ( f −1 is the inverse function
of f .)

As an example, let us solve the equation x =− ln x.
We guess x0 = 0.5 and find

x1 =− ln 0.5= 0.69 , x2 = 0.37 , x3 = 1.00 .
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This already shows that something is wrong. Therefore
we change our equation to x = e−x and start again:

x0 = 0.5 ,

x1 = e−0.5 = 0.61 ,

x2 = 0.55 ,

x3 = 0.58 ,

x4 = 0.56 ,

x5 = 0.57 ,

x6 = 0.57 .

Thus the solution, accurate to two decimal places, is
0.57.

Method 2. Interval Halving. In some pathological
cases the previous method may refuse to converge. In
such situations we can use the foolproof method of in-
terval halving. If the function is continuous (as most
functions of classical physics are) and we manage to find
two points x1 and x2 such that f(x1) > 0 and f(x2) < 0,
we know that somewhere between x1 and x2 there must
be a point x in which f(x)= 0. Now we find the sign

of f in the midpoint of the interval, and select the half
of the interval in which f changes sign. We repeat this
procedure until the interval containing the solution is
small enough.

We shall try also this method on our equation
x =− ln x, which is now written as f(x)= 0, where
f(x)= x+ ln x. Because f(x)→−∞, when x→ 0 and
f(1) > 0, the solution must be in the range (0, 1). Since
f(0.5) < 0, we know that x ∈ (0.5, 1). We continue in
this way:

f(0.75) > 0 ⇒ x ∈ (0.5, 0.75) ,

f(0.625) > 0 ⇒ x ∈ (0.5, 0.625) ,

f(0.563) < 0 ⇒ x ∈ (0.563, 0.625) ,

f(0.594) > 0 ⇒ x ∈ (0.563, 0.594) .

The convergence is slow but certain. Each iteration
restricts the solution to an interval which is half as large
as the previous one, thus improving the solution by one
binary digit.


